Integrating Longitudinal, Clinical, and Microbiome Data to Predict Growth Failure in Preterm Infants

Presenter Name: David Genetti
Institution: Astarte Medical
Email: dave@astartemedical.com
David Genetti has disclosed the following financial relationships. Any real or apparent conflicts of interest related to the content of this presentation have been resolved.

<table>
<thead>
<tr>
<th>Affiliation / Financial Interest</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chief Technology Officer</td>
<td>Astarte Medical</td>
</tr>
</tbody>
</table>

This investigation is the result of an ongoing, paid collaboration between Astarte Medical and Carnegie Mellon University.
Motivation

• Growth failure (GF) in preterm infants is associated with clinical disorders and can lead to poor neurodevelopmental outcomes.

• Gut microbiota for preterm infants is influenced by preterm birth, the environment, feeding, and clinical care.

• Our goal: Use Machine Learning methods to integrate clinical and microbiome data to Identify infants at risk of GF earlier in their NICU stay. Use the method to propose potential interventions (feeding, antibiotics) to improve outcomes.
Data And Clinical Features

Total infants
259

United States
84 (2 sites)
United Kingdom
175 (1 site)

GF = birth-to-discharge weight z-score decline ≥1.2

Growth status
- Growth failure (GF): 37%
- Normal growth (GN): 63%

Clinical data includes
- Day of life
- Post-menstrual age (PMA)
- Longitudinal body weight
 - Imputed, if missing
- Feeding type and quantity
- Medication & probiotics

Gestational age at birth
- <28 weeks: 35%
- 28-32 weeks: 60%
- > 32 weeks: 5%
Microbiome Data & Pre-processing

Stool samples (n = 2996) → Sequencing → Microbiota composition

B-splines

Initializing HMM With DMM Clustering

Poster # EP-187 for details on PGCT and DMM

Hidden Markov Model (HMM)

- HMMs are used to model the relationship between observations and hidden states
 - *Observed data*: microbiome samples, clinical features
 - *Hidden states*: gut community types
- **Task**: Learn two different HMM models
 - GF model – infants with Growth Failure
 - GN model – infants with Normal Growth
- **Prediction**: For each new infant, compute likelihood ratio between the two models
Learned HMM And Results

Representative List:

- E. faecalis
- E. coli
- B. Longum
- E. unclassified
- E. cloacae
- K. oxytoca
- B. breve
- S. epidermidis
- B. bifidum

GF HMM - Top 15 Taxa per State

GN HMM - Top 15 Taxa per State

77% True Positive Rate
Input/Output HMM (IOHMM)

- Input/Output HMM adds an input layer to help determine state transitions
 - **Input layer**: intervention data such as feeding type or medication

- **Task**: Extend HMM to include input layers

- **Intervention analysis**: Systematically analyze effects of changing values for each intervention type
IOHMM with medication and feeding outperformed all HMM-based models.

In silico perturbation analysis now possible to observe which factors influence growth failure and other outcomes – ongoing research.
Two-stages Hierarchical Approach

Clinical-based classifier scores (Random Forest)

- RF: $s \leq 0.50$
- HMM: $0.50 < s < 0.55$
- RF: $s \geq 0.55$

ROC Curves for each Model

- Random Forest (auc=0.683)
- HMM w/ 10 weeks data (auc=0.678)
- Hierarchical approach (auc=0.729)

Poster # EP-188 for details on clinical-based ML predictors
Summary

- Graphical models can successfully integrate longitudinal clinical and longitudinal microbiome data.
- This data and population remains nuanced and challenging, but we demonstrate increasing accuracy with more sophisticated models and approaches.
- Our best performing classifiers are hierarchical. Models based only on clinical data perform well apart from a confused middle population. Incorporating the microbiome via our HMM improves performance for the more difficult to predict cases.
- In silico perturbation of input factors is now possible with these models and research looking to identifying successful interventions is underway.
Acknowledgements

Carnegie Mellon University
• Ziv Bar-Joseph, PhD
• Jose Lugo-Martinez, PhD
• Siwei Xu

Astarte Medical
• Tracy Warren
• Arti Tandon, PhD
• Justine Levesque
• Daniel Gallagher

Newcastle University
• Chris Stewart, PhD
• Janet Berrington, MBBS, BMedSci, MD
• Nicholas Embleton, MD, MBBS, FRCPCH, BSc
• Gregory Young, PhD

Brigham & Women’s
• Katherine Gregory, RN, PhD

Washington St. Louis
• Misty Good, MD
Integrating Longitudinal, Clinical, and Microbiome Data to Predict Growth Failure in Preterm Infants

Presenter Name: David Genetti
Institution: Astarte Medical
Email: dave@astartemedical.com