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A B S T R A C T   

Preterm birth affects more than 10% of all births worldwide. Such infants are much more prone to Growth 
Faltering (GF), an issue that has been unsolved despite the implementation of numerous interventions aimed at 
optimizing preterm infant nutrition. To improve the ability for early prediction of GF risk for preterm infants we 
collected a comprehensive, large, and unique clinical and microbiome dataset from 3 different sites in the US and 
the UK. We use and extend machine learning methods for GF prediction from clinical data. We next extend 
graphical models to integrate time series clinical and microbiome data. A model that integrates clinical and 
microbiome data improves on the ability to predict GF when compared to models using clinical data only. In-
formation on a small subset of the taxa is enough to help improve model accuracy and to predict interventions 
that can improve outcome. We show that a hierarchical classifier that only uses a subset of the taxa for a subset of 
the infants is both the most accurate and cost-effective method for GF prediction. Further analysis of the best 
classifiers enables the prediction of interventions that can improve outcome.   

1. Introduction 

Preterm birth (<37 completed weeks of gestation) affects more than 
10% of all births worldwide [1]. Furthermore, the number of preterm 
births continues to grow at an alarming rate increasing over 30% in the 
last 30 years [2]. Preterm birth is recognized as a critical public health 
concern due to its implications for morbidity and mortality as well as its 
socio-economic liability [3–5], including persistent health disparities 
across sub-populations [6,7]. 

Preterm infants born prior to 34 weeks gestational age are dispro-
portionately at risk of morbidity and mortality due to their immaturity 
at birth. One of the most persistent health problems these infants 
experience is growth faltering (GF), typically defined as birth-to- 
discharge weight z-score decline greater than or equal to 1.2[8–17], in 
preterm infants. GF is associated with key neonatal morbidities, poor 
neurodevelopmental outcomes. and cardiometabolic and neuro-
developmental impairment throughout childhood [18–21]. 

Despite the prevalence of this problem, little is known regarding the 
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mechanisms responsible for postnatal growth faltering. Known 
contributing factors, such as neonatal illness and inadequate nutrient 
intake, are not enough for predicting growth outcomes. Recent studies in 
monkeys and piglets have implicated gut microbiome in ponderal 
growth and maturation of the brain [22,23]. In the context of preterm 
infants, the gut microbiome of these infants is influenced heavily by 
organ immaturity resulting from preterm birth, the neonatal intensive 
care unit (NICU) environment [24,25], feeding [26], and clinical care (e. 
g., mode of birth [27], antibiotic exposure [28–31]). Early identification 
of infants at risk for GF using clinical and microbiome data remains a 
major unresolved challenge [32]. 

To address this challenge, we trained prediction models using three 
time windows to enable early clinical interventions using data from a 
large international multi-site cohort of preterm infants. Our results show 
that supervised machine learning methods can be used to effectively 
predict GF from clinical data. 

To make better use of the temporal data, overcome differences in 
sampling and missing values and to integrate the clinical and micro-
biome data we next trained Hidden Markov Models (HMMs). Our results 
indicate that HMMs combining microbiome composition with clinical 
data result in improved performance when compared to models with 
clinical data alone. We further extended these models to learn Input/ 
Output HMM (IO-HMM which can be used to predict interventions that 
can impact growth for specific infants leading to more personalized 
nutrition and treatments. 

2. Materials and methods 

2.1. Clinical data 

This observational study is composed of four clinical sites: three in 
the United States (US) and one in the United Kingdom (UK). All preterm 
infants enrolled in these studies were born < 34 weeks gestational age 
between 2009 and 2019. Infants enrolled are followed from birth until 
discharged from the Neonatal Intensive Care Unit (NICU). All clinical 
data study procedures followed protocols that were approved by site- 
specific US IRBs (Mass General Brigham Protocol #2016-P-001020, 
Washington University Protocol #201706182, University of Florida 
Protocol #201501174) or UK RECs (SERVIS study: permission from 
North East and N Tyneside 2 #10/H0908/39 and Biobank: permission 
from North East and N Tyneside 1 #15/NE/0334). Written informed 
consent was obtained from the parents or guardians of the infants who 
served as subjects of the investigation. See Supporting Methods for de-
tails on how maternal and infant demographic and clinical data were 
collected from the different sites. 

2.2. Microbiome data 

Specimen collection Stool samples were obtained for a subset of pre-
term infants from three sites: two in the US and one in the UK. Samples 
were collected weekly (on average) from birth until discharged from 
NICU. 

DNA extractions and quantification Bacterial DNA was extracted using 
the DNeasy PowerSoil Kit following the manufacturer’s instructions. 
Once DNA extractions are complete, the DNA from each sample is stored 
at −20 ◦C. After extractions, prior to library prep, each sample of DNA 
was quantified fluorescently using a Qubit Fluorometer 2.0 and the 
dsDNA High Sensitivity kit. 

Library preparation Following DNA quantification, individual li-
braries were constructed from each sample. See Supporting Methods for 
details. 

Whole genome sequencing Sequencing was done on the HiSeq X 
(Illumina) with a target read depth of 10 M reads per sample. A sample 
sheet used for demultiplexing was created using Illumina Experiment 
Manager. Once the run was completed, FastQ files were generated for 
each sample. 

Post-processing While the target read depth was 10 M reads per 
sample, it was determined that a minimum of 5 M reads per sample 
would be enough for the data to be collected. All samples below 5 M 
reads were individually normalized to a concentration of 2 nM and then 
pooled for re-sequencing. Both sets of sequence data were combined for 
bioinformatic analysis. 

2.3. Problem formulation 

We consider a binary classification task. Given a set of discharged 
preterm infants annotated with corresponding z-scores computed from 
birth weight and discharged weight (Fig. S1), we defined the following 
classification problem: Prediction of growth faltering. This classification 
problem aims at predicting each preterm infant as growth faltering (GF) 
or growth normal (GN), where GF (positive class) is defined as:  
GF:= discharged z-score − birth z-score ≤ −1.2                                        

and GN is defined as:  
GN:= discharged z-score − birth z-score > −1.2                                        

2.4. Training set 

Clinical data: We collected a longitudinal data set of preterm infants 
(n = 357) from three NICUs. The data set includes GF (n = 111) and GN 
(n = 246) infants. The data was collected from birth until discharge from 
NICU (354) or transfer to another unit (3). Several attributes were 
collected for each infant including clinical, and demographic informa-
tion for both mother and infant, medications, feeding, and probiotics. 

Microbiome data: We collected longitudinal stool samples from a 
subset of these preterm infants (n = 259). This set includes preterm 
infants with GF (n = 97) and GN (n = 162). Following standard meta-
genomic analysis (Supporting Methods), 444 microbial taxa were 
quantified at the species-level for a total of 2,923 samples. 

Tables 1 and S1 summarize the attributes used in this study. 

2.5. Independent validation set 

We generated an independent test set to assess the performance of 
the clinical classifiers. This independent cohort consists of 135 preterm 
infants from a new site with a different distribution for GF (n = 73) and 
GN (n = 62). This dataset included a subset of clinical attributes: birth z- 
score, gestational age at birth, maternal age at time of delivery, biweekly 
body weight, and weekly feeding information (Tables 1 and S1). 

2.6. Imputation of missing data 

Clinical data: For each preterm infant profile, we imputed missing 
values for an attribute of interest by using k-nearest neighbors (k-NN) 
imputation approach [33] with k = 5. Specifically, we modified the 
KNNImputer function from scikit-learn package (version 0.23.1) such 
that:  

● If the feature is discrete, the imputed value is determined based on 
the majority among k nearest neighbors, where ties are broken based 
on neighbor distance.  

● If the feature is continuous, the imputed value is defined as the 
arithmetic mean of all k neighbors. 

Microbiome data: In order to circumvent potentially missing or noisy 
microbiome samples as well as non-uniform sampling rates across in-
fants, we followed prior work and used B-splines for fitting continuous 
curves to microbial composition time series data [34,35]. Additionally, 
we removed any infant with fewer than five measured timepoints. 
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2.7. Construction of feature matrices across different longitudinal periods 

All available features across sites were encoded weekly, except for 
Body weight which was only available biweekly for the majority of in-
fants. Next, we learned classifiers for three different periods (or win-
dows). (1) A classifier only using attributes collected at Birth, (2) Up to 
two weeks and (3) Up to one month. 

2.8. Model construction 

2.8.1. Clinical-based models 
For a given feature set for a specific period, we trained a random 

forest classifier, with and without imputed data, using the fitcensemble 
function in Matlab (version R2020a) as well as a logistic regression 
classifier on the imputed data using the LogisticRegression function from 
scikit-learn in Python. We performed a parameter sweep to select the best 
parameters for RF and LR (Supporting Methods). Finally, prediction 
scores were computed using the predict function (Matlab) with the 
default setting and predict_proba function (Python) which reports prob-
ability estimated for LR. 

2.8.2. Microbiome-based models 
Dirichlet Multinomial Mixtures (DMMs): DMM clustering [37] is a 

probabilistic method for community detection in microbial samples. 
Importantly, DMM is an infinite mixture model, thus, it can infer the 
optimal number of clusters (i.e., community types) for a given data set. 

In this study, we defined a baseline classifier by first clustering the 
temporal gut microbiome samples using DMM into six clusters referred 
to as gut community types (GCTs). We then picked the GCT assignment 
of the microbiome sample closest to the 7-day interval in each week 
from week 28 to week 37 such that each infant could be represented by a 
fixed-length vector comprising these 10 weeks. After one-hot encoding 
of these categorical vectors, we next imputed any missing GCT assign-
ments using a k-nearest neighbor imputer. Finally, we trained a LR 
classifier to discriminate between GF and GN. 

Hidden Markov models (HMMs): We use HMMs to learn a flexible 
model for classifying longitudinal microbiome data. HMMs are defined 
using a set of states (GCTs in this work), the transitions between these 
states and the emissions of each state. 

We learn two HMMs, one for GF infants and another for GN. 

2.8.3. Initializing HMMs 
We set the number of states in the HMMs to six which is the number 

determined by DMM [37] for this data. Emissions in this model consist of 
microbiome profiles. The emission values are modeled using Gaussian 
distributions. We assume that a microbiome profile gi at state j is nor-
mally distributed with mean μj and variance σj2, 
gij ∼ N(μj, σj

2)

The microbiome data consists of the relative abundance of 444 
bacterial taxa. We have also tested the HMM with a subset of taxa based 
on the top X as determined by variance, where X ranges from 1 to 25. We 
did not consider a larger range for X as performance plateaued around X 
≥ 20. 

2.8.4. Learning and inference for integrative HMM 
A key challenge in clinical data analysis is missing values. As noted 

above, several methods for imputation of such data have been proposed 
and used [33]. HMMs provide an alternative that enables learning a 
model even when values are missing by integrating over all possible 
assignments taking into account their probability. This overcomes the 
challenge of selecting user defined parameters for the imputation (for 
example, the number k in the k-nearest neighbors approach) and so may 
lead to much better results. 

To allow the use of data with missing values, we modified the stan-

dard Expectation Maximization (EM) algorithm used for learning and 
inference in HMMs. From the original HMM forward algorithm, 
αt(i) = P(o1, o2, ..., ot, st = i)

= P(ot|st = i)
∑

j∈S
P(st = i|st−i = j)αt−1(j)

In case that the observation is missing, ot can be any value. There-
fore, using the sum rule of probability, 
αt(i) =

∑
j∈S

P(st = i|st−i = j)αt−1(j)
∑

k∈R
P(ot = k|st = i)

=
∑

j∈S
P(st = i|st−i = j)αt−1(j)⋅1  

=
∑

j∈S
P(st = i|st−i = j)αt−1(j)

Similarly, for the backward algorithm, we apply the same modifi-
cation on the emission probability. 
βt(i) = P(ot+1, ot+2, ..., oT |st = i)

= P(ot|st = i)
∑

j∈S
P(st+1 = i|st = j)βt+1(j)

=
∑

j∈S
P(st+1 = i|st = j)βt+1(j)

Thus, given the set of states S, initial start probability Π, transition 
probability matrix A, mean μ, and variance σ, the modified E-step now 
considers the emission probability, bj(ot), to be 1 if the sample is missing. 
All other recurrences remain the same. 
αt(i)= {bi(ot)Πi

∑
j∈S

bi(ot)Ajiαt−1(j)
∑

j∈S
Ajiαt−1(j)

βt(i)= {1
∑

j∈S
bi(ot+1)Aijβt+1(j)

∑
j∈S

Aijβt+1(j)

St(i, j)= {
αt(i)Aijbj(ot+1)βt+1(j)∑

k αt(k)βt(k)

αt(i)Aijβt+1(j)∑
k αt(k)βt(k)

In the M − step, only available microbiome samples are used to re- 
estimate the means and variances. 

μi =

∑
t ot

t  

σi =

∑
t (ot − μt)(ot − μt)

T

t 

Input/Output Hidden Markov Models: Input/Output HMM (IO- 
HMM), extend HMMs to enable the determination of the impact of 
various clinical decisions and interventions (e.g., feeding, medications). 
In standard HMMs we have a state (unobserved) layer and the emission 
(observed) layer. In IO-HMMs we have an additional input (observed) 
layer. See Fig. 1 for an example. The input layer encodes possible in-
terventions that can impact transition between states which ultimately 
can change the outcome of the process. When using this layer, the 
standard transition probability table used in HMMs is modified to 
become a transition probability function. We use logistic regression to 
learn that function. Specifically, for each state in the model i we learn a 
function: 
fj,k(I) = LRj(k|I)

where I is the input for a specific observation, j and k are states in the 
model and LRj is the logistic regression function learned for state j. To 
learn the logistic regression model for a specific state we modify the M −
step by using the Maximum Likelihood Estimate of St(i, j) for each time 
point. with the cross-entropy loss 
Li = −

∑
t

argmaxj(St(i, j))log(LRi(j|It))
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where LRi(j|It) is the probability of transitioning from state i to state j 
based on the clinical inputs at time t (Supporting Methods). Here we 
used the input layer to encode possible interventions including different 
types of feeding, feeding quantity, medication, and probiotics. 

2.9. Perturbation analysis on clinical data 

We conducted a perturbation analysis of feeding intervention stra-
tegies using the clinical classification model. We first trained a LR model 
for the One month time-window. We then systematically changed the 
value of specific feeding type and quantity features and evaluated the 
new prediction score from the classifier on each perturbed instance. See 
Supporting Methods for more details on perturbation analysis and 
feature selection. 

2.10. Evaluation methodology 

The performance of each clinical-based method was evaluated 
through a train/test split, where 20% of preterm infants are randomly 
selected for the test set and the remaining 80% are used for training. In 
the case of the HMM-based models, the classification of growth faltering 
versus growth normal uses two models, one trained with growth failure 
samples only and one with growth normal samples only. Then, for each 
sample in the testing dataset, we calculate the likelihood of such a 
sample being in the growth failure model and that in the growth normal 
model. The final likelihood is the quotient of the two likelihood values. 

3. Results 

We developed a workflow for predicting growth faltering in preterm 
infants from clinical and microbiome data (Fig. 1). We start by 
computing weekly features from the observed clinical and microbiome 
data. Next, we replace missing clinical and microbiome data using a k- 
nearest neighbors (k-NN) or probabilistic imputation approach 
[33,34,35]. We then use clinical and microbiome information to learn 

various classification models and explore their impact on identifying 
preterm infants at risk of growth failure. 

We applied our methods to study a longitudinal data set from pre-
term infants across three different sites (n = 357): two US-based sites (n1 
= 128 and n2 = 50) and a UK site (n3 = 179). The demographic char-
acteristics and health conditions per site are summarized in Table 1 and 
Table S1. In addition to clinical data, for a subset of these infants we also 
obtained temporal stool samples (n = 259; n1 = 39). 

3.1. Classifying using clinical data 

We first used supervised machine learning models to predict growth 
faltering (GF) versus normal growth (GN) at discharge which we defined 
as [9,10,12,13,17]:  
GF:= birth-to-discharge weight z-score ≤ −1.2                                           

GN:= birth-to-discharge weight z-score > −1.2                                         

Fig. S1 shows the distribution of the birth-to-discharge weight z- 
score changes for the cohort of preterm infants (GF = 111, GN = 246). 
Differences in data collection between and within sites led to several 
preterms missing parts of the clinical features used by the classifier. To 
enable learning using these, we also developed and tested imputation 
methods to overcome differences in data collection across sites. Fig. S2 
shows the accuracy of imputation for different clinical features (i.e., 
body weight and feeding quantity). We observe that our imputation 
method is reliable at imputing body weight values: body weight at birth 
(R2 = 0.93) and body weight at 29 days of life (R2 = 0.91). The impu-
tation method is still useful when imputing feeding information though 
not as accurate as for weight (week 1: R2 = 0.49 and week 2: R2 = 0.66). 

We next trained our prediction models for three-time windows 
(Methods): 1) Birth, 2) Two weeks, and 3) One month. For each, we tested 
different models using random forest (RF) and logistic regression (LR) by 
randomly splitting the dataset into 80% training and 20% test sets. 
Model performance was also systematically assessed through a 5-fold 

Fig. 1. Overview of the data and methods used. Left: Clinical data based models. The data for these models is from clinical features across each of the time-periods 
considered in this study: Birth, Two weeks, and One month. We split data to training and test data (with and without data imputation) and use two machine learning 
models (Random Forest and Logistic Regression) for learning a predictor. Several performance metrics are computed for each of the classifiers and post-model 
selection of key features is performed. Right: Integrating clinical and microbiome longitudinal data. We use two types of graphical models for integrating these 
data types. A standard Hidden Markov Model (HMM) (left) and an Input/Output HMM (IO-HMM). For each HMM-based approach, we learn two different models: 
one for preterm infants with growth failure (GF) and another for those infants with normal growth (GN). Moreover, we evaluate each approach using different 
performance metrics. Finally, we use the IOHMM model to predict intervention strategies outcomes. 
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cross validation on the training set (n = 286: GF = 91, GN = 195) and 
using an independent test set (n = 71: GF = 20, GN = 51). For each, we 
computed multiple performance metrics: sensitivity, accuracy, and area 
under the ROC curve (AUC). Results are summarized in Table 2, Fig. 2, 
and Fig. S3. We find that LR outperforms RF across all three windows. 
Specifically, LR classifiers improved AUC performance between 2% and 
9% when compared to RF with and without data imputation, respec-
tively. Interestingly, Fig. 2 (left panel) shows that imputation of missing 
values did not improve model performance for the LR classifier on the 
test set (Birth: 0.75 vs. 0.75; Two weeks: 0.72 vs. 0.72; One month: 0.76 vs. 

0.76). In contrast, results for RF classifiers were impacted by the addi-
tion of imputed data (Birth: 0.66 vs. 0.75; Two weeks: 0.69 vs. 0.72; One 
month: 0.72 vs. 0.76). See Supporting Results for further analysis of the 
effects of imputation on accuracy. 

3.2. Validation on independent test set 

To test the generality of our models, we validated their performance 
on an independent cohort of 135 preterm infants from a third site with a 
different GF profile from the training set, including fewer infants with 
GN (n = 62) than with GF (n = 73). As shown in Table 2 and Fig. 2 (right 
panel), the LR classifier outperforms random forest classifiers and more 
importantly, performs favorably on the independent validation set for 
these time-periods (Birth: 0.76; Two weeks: 0.59; One month: 0.75). 

3.3. Minimum feature set with feature selection 

To enable a faster and more efficient detection of GF we employed a 
series of feature selection techniques [36] to collect a ranked list of 
important features. As shown in Fig. S5, the AUC performance values for 
the selected minimal feature set decreased when compared to the full 
feature set model across all three periods. Performance differences were 
small (up to 5%) for the early time points Birth and Two weeks but 
increased for One month (LR: 0.73 vs. 0.67). This behaviour is likely 
because the most predictive features are post-menstrual age (PMA) of 
infant at birth, namely Birth PMA (Pearson correlation on class labels: 
−0.15; P-value: 7.7E-03) and Birth z-score (Pearson correlation on class 
labels: 0.16; P-value: 9.2E-03). Therefore, as time progresses, the 
importance of the information from these two features decreases. See 
Fig. S6 and Supporting Results for additional discussion. 

3.4. Hidden markov models for integrating clinical and microbiome data 

We also collected weekly stool samples for a subset of the preterm 
infants for which we had clinical data (n = 259: GF = 97, GN = 162). 
The number of profiled samples per infant ranged from 1 to 64 time-
points. To overcome differences in data collection, we focused on sam-
ples obtained between weeks 28 and 37 based on PMA (Methods). We 
next used HMMs to integrate microbiome and clinical data to predict GF 
in preterm infants (Methods). We learn two different models, one for 
preterm infants with GF and another for GN. In addition to learning 
HMM models we have also learned models using an extension of HMMs 
termed IO-HMMs (Methods) which allows the separation of in-
terventions and observations. We compared our integrative HMM 
models to a logistic regression model based solely on clinical data but 
restricted to these 259 infants, and a naive (baseline) approach. The 
baseline uses Dirichlet Multinomial Mixtures (DMM)[37] to cluster the 
microbiome samples across all preterm infants into six possible Gut 
Community Types (GCTs, Methods). Next, for each infant, a fixed-length 
vector comprising 10 weeks (i.e., between 28 and 37 weeks based on 
PMA) is created using the GCT weekly assignment. The baseline com-
bines this with clinical data using a logistic regression model. 

We observe (Fig. 3) that the HMM approach combining both clinical 

Table 1 
Summary of demographic characteristics and health conditions per site. For each 
site, we list the total number of preterm infants in each class: growth faltering 
(GF) or normal growth (GN) as well as demographic characteristics and health 
conditions for each site, if available.  

Characteristics Site (# of GF; # of GN) 
n1 = 128 
(16; 112) 

n2 = 50 
(12; 38) 

n3 = 179 
(83; 96) 

n4 = 135 
(73; 62) 

Gestational age (weeks) 
Mean 
Standard deviation 
Range  

30.0 
2.7 
23.6 to 
33.7  

29.0 
2.7 
24.1 to 
34.9  

26.9 
2.1 
23.0 to 
32.0  

27.2 
2.0 
23.0 to 
32.0 

Birth body weight (grams) 
Mean 
Standard deviation 
Range  

1376 
574 
410 to 
3890  

1291 
461 
500 to 
2320  

920 
298 
500 to 
2000  

914 
182 
500 to 
1247 

Birth z-score 
Mean 
Standard deviation 
Range  

−0.17 
0.87 
−2.7 to 
4.5  

0.15 
0.96 
−1.6 to 
2.0  

−0.05 
0.87 
−2.3 to 
2.9  

0.02 
0.95 
−2.4 to 
3.0 

Gender 
Male 
Female  

60 
68  

21 
29  

103 
76  

72 
63 

Race 
White 
African American 
American Indian/Alaska 
Native 
Asian 
Other  

64 
24 
1 
5 
9  

31 
16 
0 
0 
2  

- 
- 
- 
- 
-  

71 
59 
0 
1 
4 

Ethnicity 
Hispanic 
Non-Hispanic  

16 
94  

0 
50  

– 

-  
15 
120 

Mode of delivery 
Vaginal 
C-section  

27 
101  

16 
34  

85 
94  

37 
98 

Multiple gestation? 
Yes 
No  

50 
77  

30 
20  

57 
122  

33 
102 

n2 = 45 and n3 = 175). Besides the differences in clinical practice between sites, 
they also vary in the number of infants profiled, the type and frequency of 
clinical. 
information they collected, and the overall number of microbiome samples. 
Thus, these sites provide a good set to test the generality of our methods. 

Table 2 
Summary of results for clinical-based predictive models across data sets. For each data set, we present the total number of preterm infants in each class: growth faltering 
(GF) or normal growth (GN) as well as three different performance metrics: sensitivity, accuracy and area under the ROC curve (AUC-ROC) for classifiers using clinical 
data at three different time-periods: Birth, Two weeks and One month.  

Dataset # of infants Performance metrics 
GF GN Sensitivity Accuracy AUC-ROC 

Birth Two 
weeks 

One 
month 

Birth Two 
weeks 

One 
month 

Birth Two 
weeks 

One 
month 

Training 91 195  0.68  0.72  0.71  0.61  0.66  0.62  0.64  0.73  0.69 
Test 20 51  0.70  0.80  0.80  0.70  0.66  0.68  0.75  0.72  0.76 
Validation 73 62  0.66  0.56  0.64  0.68  0.55  0.65  0.76  0.59  0.75  
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and microbiome data outperformed the DMM baseline (AUC: 0.68 vs. 
0.61) as well as the clinical data only baseline (AUC: 0.68 vs. 0.64). 
Furthermore, the combined clinical-microbiome HMM slightly 
improved on the HMM that only used microbiome data (AUC: 0.68 vs. 
0.67). Finally, the extended IO-HMM further improved predictive per-
formance over the combined HMM approach (AUC: 0.70 vs. 0.68). 

Reducing the set of 444 taxa to 15 (Methods) can further improve the 
performance of our methods (AUC: 0.68 vs. 0.66, Fig. S8). The top list of 
taxa suggests some potentially useful microbiome biomarkers for 
discriminating between GF and GN infants (e.g., E. coli in the learned GF 
model for GCT 4 or B. breve in the learned GN model for GCT 5 Fig. S9 

and Supporting Results). 

3.5. Two-stage hierarchical model improves overall accuracy 

Our results indicate that microbiome data can help improve pre-
diction accuracy, but only for a limited set of infants. We have thus 
tested a hierarchical strategy which attempts to initially predict GF using 
clinical data and uses microbiome data only for those infants for which 
the clinical data does not provide clear prediction. Fig. S10 shows the 
distribution of predicted scores (x-axis) for the best clinical classifier 
based on logistic regression (LR). This result suggests that preterm 

Fig. 2. Performance comparison of clinical-based predictive models for three time-windows. ROC curve and area under the curve (AUC) for the three different 
classifiers at each time window: Birth, Two weeks, and One month. Left: Figures show the performance results on a held-out test set based on the same sites as the 
training data. Right: Figures show the performance results on an independent validation cohort from a different site. For two of the three time windows the results for 
logistic regression on the independent cohort are as good as the results on the training cohorts indicating good generalizability. 
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infants with LR scores s ≤ 0.40 or s ≥ 0.70 can be accurately discrimi-
nated by the LR classifier (AUC = 0.67) as well as our HMM approach 
(AUC = 0.71). On the other hand, the remaining preterm infants (i.e., 
0.40 < s < 0.70) are more difficult to predict by the LR model (AUC =
0.59), whereas our proposed HMM approach on this subset leads to 
better performance (AUC = 0.66). The proposed two-stage hierarchical 
approach (AUC = 0.73) outperformed both models: LR (AUC = 0.64) 
and HMM (AUC = 0.68) over the full set of infants (Fig. 4). 

3.6. Predicting interventions to reduce GF rate 

An advantage of using the IO-HMM approach is the ability to sepa-
rate the impact of interventions (for example, feeding types) from ob-
servations (for example, weight or microbiome composition) in a 
supervised framework. We tested two potential intervention strategies: 
(1) feeding-based interventions - we explored the 

impact of changing the feeding type to another type (e.g., maternal 

breastmilk to formula), and (2) medication-based interventions. It is 
worth noting that the UK site (n3) does not use donated breastmilk as 
part of the standard of care, thus, we combined maternal breastmilk and 
donated breastmilk into a broader type: human milk. Figs. 5 and S11 
summarize predicted impacts for feeding- and medication-based inter-
vention strategies. The IO-HMM method predicts that for selected pre-
term babies (based on their microbiome profile) switching to human 
milk helps increase the likelihood of GF. 

4. Discussion 

Despite many advances in nutritional care, achieving optimal post-
natal growth and nutrient accretion in the NICU remains a major chal-
lenge. To date, parenteral nutrition and enteral fortification have been 
the focus of interventions, but the straightforward strategy of increasing 
nutrient provision has proven to be inadequate. Early identification of 
the infants most at risk for GF remains a pediatric health priority. 

We assembled a large unique dataset for predicting GF in preterm 
infants. Our data included longitudinal clinical and microbiome data for 
357 infants (259 of which with microbiome samples) from the UK and 
the US. We tested different classifiers using the clinical data and 
developed a new classification framework based on Hidden Markov 
Models (HMMs) to combine the clinical and microbiome data. Our HMM 
framework combines several desirable features. First, it treats time as a 
key variable and does not assume independence between time points as 
other classifiers do [38]. Second, since it is probabilistic it can directly 
handle noise and missing values. Finally, it can be extended to include 
not just observations but also interventions using our IO-HMM model. 

For our clinical based models, we found that LR with imputation 
performs best and that a subset of the features provides adequate ac-
curacy. We also observed that as the infants grow older, feeding infor-
mation (i.e., feeding type and volume) plays a central role in improving 
model accuracy. In contrast, we found that the predictive ability of 
clinical attributes such as gestational age, post-menstrual age and birth 
z-score decreases over time. We have further tested our models on data 
from an independent cohort. The fact that the accuracy for prediction for 
this cohort is comparable to the accuracy of our held-out test set is a 
strong indicator that the model can indeed generalize to unseen cases. 

Microbiome information can help to further improve prediction ac-
curacy. We found that using the top 15 species for each sample (a total of 

Fig. 3. Results for integrating clinical and microbiome data. For each method, 
the figure presents the ROC curve and area under the curve (AUC). Baseline 
microbiome method uses clustering results based on a previously published 
clustering approach [37] while clinical data only method is based on a logistic 
regression model trained on the same set of preterm infants. 

Fig. 4. Hierarchical classification improves prediction accuracy. Figure shows the ROC curve and area under the curve (AUC) for the two-stage hierarchical classifier, 
as well as both of the corresponding individual clinical- and microbiome-based classifiers. 
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17 of the 444 identified for all samples) is sufficient to accurately 
discriminate between GF and GN. 

Our IO-HMM model allows for in silico analysis to determine the 
impact of various clinical decisions and interventions. Our systematic 
analysis of intervention strategies using the learned IO-HMM suggests 
that for certain preterm infants switching to formula milk helps reduce 
the risk of GF. Parallel to this result, our analysis of feeding interventions 
using LR (solely based on clinical data, Figs. S12-S13) suggests that for 
selected preterm babies switching from donated and even maternal 
breastmilk to formula significantly reduces GF. These results may be 
driven by the fact that most of the preterm GN infants (61%: 103 out of 
168) received formula at least once, whereas only a small fraction of GF 
infants (26%: 21 out of 81) received formula at least once. Unlike 
IOHMMs that can distinguish between interventions and observations, 
the clinical LR model treats both equally and so it strongly associates the 
formula feeding type with reduced risk of growth faltering. 

5. Conclusion 

In summary, while predicting GF risk remains a nuanced and chal-
lenging task, we demonstrate predictive accuracy with sophisticated 
models combining clinical and microbiome data. We presented a hier-
archical model that can improve accuracy while being cost effective 
requiring additional data only for those for which results are inconclu-
sive based on initial data. 

Data availability statement 

Data and code used in this study will be available upon acceptance. 

Author contributions 

T.W. and Z.B.-J. conceived the project. J.L.-M., S.X., A.T., D.G., T.W. 
and Z.B.-J. contributed to the design of experiments. J.L.-M. and S.X. 
developed the computational methods. S.X., J.L.-M. and Z.B.-J. analyzed 
the data and wrote the first draft of the manuscript. J.L. and D.G. curated 

multiple data sets for training and validation purposes. C.J.S., J.E.B., N. 
D.E., G.Y., K.E.G. and M.G. provided clinical and microbiome data for 
the development of computational models. L.A.P. and J.N. provided 
data for independent validation of clinical classifier. D.G., A.T., T.W. and 
Z.B.-J. supervised the project development. All authors contributed to 
the review and writing of the manuscript. 

Funding 

Work partially funded by a grant from Astarte Medical to Z.B.-J. 

Declaration of Competing Interest 

The authors declare the following financial interests/personal re-
lationships which may be considered as potential competing interests: 
Astarte Medical. 

Appendix A. Supplementary material 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.jbi.2022.104031. 

References 
[1] H. Blencowe, S. Cousens, M.Z. Oestergaard, D. Chou, A.-B. Moller, R. Narwal, 

A. Adler, C. Vera Garcia, S. Rohde, L. Say, J.E. Lawn, National, regional, and 
worldwide estimates of preterm birth rates in the year 2010 with time trends since 
1990 for selected countries: a systematic analysis and implications, The Lancet. 
379 (9832) (2012) 2162–2172, https://doi.org/10.1016/S0140-6736(12)60820-4. 

[2] C.K. Shapiro-Mendoza, E.M. Lackritz, Epidemiology of late and moderate preterm 
birth, Semin. Fetal. Neonatal. Med. 17 (3) (2012) 120–125, https://doi.org/ 
10.1016/j.siny.2012.01.007. 

[3] N.-H. Morken, Preterm birth: new data on a global health priority, The Lancet. 379 
(9832) (2012) 2128–2130, https://doi.org/10.1016/S0140-6736(12)60857-5. 

[4] L. Trasande, P. Malecha, T.M. Attina, Particulate Matter Exposure and Preterm 
Birth: Estimates of U.S. Attributable Burden and Economic Costs, Environ. Health 
Perspect. 124 (12) (2016) 1913–1918, https://doi.org/10.1289/ehp.1510810. 

[5] M.S. Harrison, R.L. Goldenberg, Global burden of prematurity, Predict. Prev. 
Preterm. Birth Sequelae. 21 (2) (2016) 74–79, https://doi.org/10.1016/j. 
siny.2015.12.007. 

Fig. 5. Summary of feeding- and medication-based interventions predictions based on the Input/Output HMM (IO-HMM). For each intervention type, we list the 
effect of the intervention strategy as the fraction of preterm infants predicted to be at risk of growth failure after intervention over the observed number of infants at 
risk of growth faltering. Values to the left of center indicate reduced risk while values to the right indicate elevated risk. 

J. Lugo-Martinez et al.                                                                                                                                                                                                                         

https://doi.org/10.1016/j.jbi.2022.104031
https://doi.org/10.1016/j.jbi.2022.104031
https://doi.org/10.1016/S0140-6736(12)60820-4
https://doi.org/10.1016/j.siny.2012.01.007
https://doi.org/10.1016/j.siny.2012.01.007
https://doi.org/10.1016/S0140-6736(12)60857-5
https://doi.org/10.1289/ehp.1510810
https://doi.org/10.1016/j.siny.2015.12.007
https://doi.org/10.1016/j.siny.2015.12.007


Journal of Biomedical Informatics 128 (2022) 104031

9

[6] A.S. Bryant, A. Worjoloh, A.B. Caughey, A.E. Washington, Racial/ethnic disparities 
in obstetric outcomes and care: prevalence and determinants, Am. J. Obstet. 
Gynecol. 202 (4) (2010) 335–343, https://doi.org/10.1016/j.ajog.2009.10.864. 

[7] H.A. Frey, M.A. Klebanoff, The epidemiology, etiology, and costs of preterm birth, 
Predict. Prev. Preterm. Birth Sequelae. 21 (2) (2016) 68–73, https://doi.org/ 
10.1016/j.siny.2015.12.011. 

[8] L. Sices, D. Wilson-Costello, N. Minich, H. Friedman, M. Hack, Postdischarge 
growth failure among extremely low birth weight infants: Correlates and 
consequences, Paediatr. Child Health 12 (1) (2007) 22–28. 

[9] M.J. Johnson, S.A. Wootton, A.A. Leaf, A.A. Jackson, Preterm Birth and Body 
Composition at Term Equivalent Age: A Systematic Review and Meta-analysis, 
Pediatrics 130 (3) (2012) e640, https://doi.org/10.1542/peds.2011-3379. 

[10] Horbar JD, Ehrenkranz RA, Badger GJ, et al. Weight growth velocity and postnatal 
growth failure in infants 501 to 1500 grams: 2000–2013. https://doi.org/10. 
1542/peds.2015-0129. 

[11] M.M.S. Rover, C.S. Viera, R.C. Silveira, A.T.B. Guimarães, S. Grassiolli, Risk factors 
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